Fault Detection for Non-Gaussian Processes Using Multiple Canonical Correlation Analysis Models and Box-Cox Transformation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian processes for canonical correlation analysis

We consider several stochastic process methods for performing canonical correlation analysis (CCA). The first uses a Gaussian Process formulation of regression in which we use the current projection of one data set as the target for the other and then repeat in the opposite direction. The second uses a method which relies on probabilistically sphering the data, concatenating the two streams and...

متن کامل

Correlation Changepoints in Log - Gaussian Cox Processes

This report seeks to analyse correlations in Point Processes. It provides an overview of current methods for analysing Point Processes and correlations in Gaussian Process timeseries. It reviews Intrinsic and Linear co-regionalisation models, as well as a correlation changepoint model. The use of the Kronecker Product for reducing computational complexity is also explored. All models are tested...

متن کامل

Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...

متن کامل

Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis

Ž . Principal component analysis PCA is a well-known data dimensionality technique that has been used to detect faults Ž . during the operation of industrial processes. Dynamic principal component analysis DPCA and canonical variate analysis Ž . CVA are data dimensionality techniques which take into account serial correlations, but their effectiveness in detecting faults in industrial processes...

متن کامل

Learning non-Gaussian Time Series using the Box-Cox Gaussian Process

Gaussian processes (GPs) are Bayesian nonparametric generative models that provide interpretability of hyperparameters, admit closed-form expressions for training and inference, and are able to accurately represent uncertainty. To model general non-Gaussian data with complex correlation structure, GPs can be paired with an expressive covariance kernel and then fed into a nonlinear transformatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2914960